C++
C++ Bref
C++ 是一种静态类型的、编译式的、通用的、大小写敏感的、不规则的编程语言,支持过程化编程、面向对象编程和泛型编程。
C++ 被认为是一种中级语言,它综合了高级语言和低级语言的特点。
C++ 是由 Bjarne Stroustrup 于 1979 年在新泽西州美利山贝尔实验室开始设计开发的。C++ 进一步扩充和完善了 C 语言,最初命名为带类的C,后来在 1983 年更名为 C++。
C++ 是 C 的一个超集,事实上,任何合法的 C 程序都是合法的 C++ 程序。
注意:使用静态类型的编程语言是在编译时执行类型检查,而不是在运行时执行类型检查。
类 Class
类是虚拟的, 统称, 对象是类的实体
对象 Objects
objects = attributes + services = data + operations
对象 = 属性 + 服务 = 数据 + 操作
- Data 要避免去直接操作, 应该通过Operations去交互
三个特性
- 封装
- 继承
- 多态
Objects & Class
类是虚拟的, 统称, 对象是类的实体
猫 -> 种类 -> Class
这只猫 -> 实体 -> Objects
面向对象
C++ 完全支持面向对象的程序设计,包括面向对象开发的四大特性:
- 封装
- 抽象
- 继承
- 多态
C++ 程序可以定义为对象的集合,这些对象通过调用彼此的方法进行交互。
标准库
标准的 C++ 由三个重要部分组成:
- 核心语言,提供了所有构件块,包括变量、数据类型和常量,等等。
- C++ 标准库,提供了大量的函数,用于操作文件、字符串等。
- 标准模板库(STL),提供了大量的方法,用于操作数据结构等。
hello word
Code
1 |
|
编译
1 |
|
g++编译器
g++ 有些系统默认是使用 C++98,我们可以指定使用 C++11 来编译 main.cpp 文件:
1 |
|
g++ 常用命令选项
选项 | 解释 |
---|---|
-ansi | 只支持 ANSI 标准的 C 语法。这一选项将禁止 GNU C 的某些特色, 例如 asm 或 typeof 关键词。 |
-c | 只编译并生成目标文件。 |
-DMACRO | 以字符串”1”定义 MACRO 宏。 |
-DMACRO=DEFN | 以字符串”DEFN”定义 MACRO 宏。 |
-E | 只运行 C 预编译器。 |
-g | 生成调试信息。GNU 调试器可利用该信息。 |
-IDIRECTORY | 指定额外的头文件搜索路径DIRECTORY。 |
-LDIRECTORY | 指定额外的函数库搜索路径DIRECTORY。 |
-lLIBRARY | 连接时搜索指定的函数库LIBRARY。 |
-m486 | 针对 486 进行代码优化。 |
-o | FILE 生成指定的输出文件。用在生成可执行文件时。 |
-O0 | 不进行优化处理。 |
-O | 或 -O1 优化生成代码。 |
-O2 | 进一步优化。 |
-O3 | 比 -O2 更进一步优化,包括 inline 函数。 |
-shared | 生成共享目标文件。通常用在建立共享库时。 |
-static | 禁止使用共享连接。 |
-UMACRO | 取消对 MACRO 宏的定义。 |
-w | 不生成任何警告信息。 |
-Wall | 生成所有警告信息。 |
基本语法
基本语法
基本语法和c非常类似, ; 结尾等等
三字符组(??= etc.)
一种古老的语法
三字符组就是用于表示另一个字符的三个字符序列,又称为三字符序列。三字符序列总是以两个问号开头。
三字符组 | 替换 |
---|---|
??= | # |
….. | …. |
数据类型(bool etc.)
C++ 就是在以前的c拓展了一个 bool
C++ 为程序员提供了种类丰富的内置数据类型和用户自定义的数据类型。下表列出了七种基本的 C++ 数据类型:
类型 | 关键字 |
---|---|
布尔型 | bool |
字符型 | char |
整型 | int |
浮点型 | float |
双浮点型 | double |
无类型 | void |
宽字符型 | wchar_t |
其实 wchar_t 是这样来的:
1 |
|
存储类(auto register etc.)
存储类定义 C++ 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C++ 程序中可用的存储类:
- auto
- register
- static
- extern
- mutable
- thread_local (C++11)
从 C++ 17 开始,auto 关键字不再是 C++ 存储类说明符,且 register 关键字被弃用。
auto 存储类
自 C++ 11 以来,auto 关键字用于两种情况:声明变量时根据初始化表达式自动推断该变量的类型、声明函数时函数返回值的占位符。
C++98标准中auto关键字用于自动变量的声明,但由于使用极少且多余,在 C++17 中已删除这一用法。
根据初始化表达式自动推断被声明的变量的类型,如:
1 |
|
register 存储类
register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 ‘&’ 运算符(因为它没有内存位置)。
1 |
|
寄存器只用于需要快速访问的变量,比如计数器。还应注意的是,定义 ‘register’ 并不意味着变量将被存储在寄存器中,它意味着变量可能存储在寄存器中,这取决于硬件和实现的限制。
mutable 存储类
mutable 说明符仅适用于类的对象,这将在本教程的最后进行讲解。它允许对象的成员替代常量。也就是说,mutable 成员可以通过 const 成员函数修改。
thread_local 存储类
使用 thread_local 说明符声明的变量仅可在它在其上创建的线程上访问。 变量在创建线程时创建,并在销毁线程时销毁。 每个线程都有其自己的变量副本。
thread_local 说明符可以与 static 或 extern 合并。
可以将 thread_local 仅应用于数据声明和定义,thread_local 不能用于函数声明或定义。
以下演示了可以被声明为 thread_local 的变量:
1 |
|
数学运算(cos sin etc.)
C++ 内置了丰富的数学函数,可对各种数字进行运算。下表列出了 C++ 中一些有用的内置的数学函数。
为了利用这些函数,您需要引用数学头文件 **
序号 | 函数 & 描述 |
---|---|
1 | double cos(double); 该函数返回弧度角(double 型)的余弦。 |
2 | double sin(double); 该函数返回弧度角(double 型)的正弦。 |
3 | double tan(double); 该函数返回弧度角(double 型)的正切。 |
4 | double log(double); 该函数返回参数的自然对数。 |
5 | double pow(double, double); 假设第一个参数为 x,第二个参数为 y,则该函数返回 x 的 y 次方。 |
6 | double hypot(double, double); 该函数返回两个参数的平方总和的平方根,也就是说,参数为一个直角三角形的两个直角边,函数会返回斜边的长度。 |
7 | double sqrt(double); 该函数返回参数的平方根。 |
8 | int abs(int); 该函数返回整数的绝对值。 |
9 | double fabs(double); 该函数返回任意一个浮点数的绝对值。 |
10 | double floor(double); 该函数返回一个小于或等于传入参数的最大整数。 |
随机数(rand etc.)
在许多情况下,需要生成随机数。关于随机数生成器,有两个相关的函数。一个是 **rand()**,该函数只返回一个伪随机数。生成随机数之前必须先调用 srand() 函数。
下面是一个关于生成随机数的简单实例。实例中使用了 time() 函数来获取系统时间的秒数,通过调用 rand() 函数来生成随机数
字符串(string etc.)
C++ 提供了以下两种类型的字符串表示形式:
- C 风格字符串
- C++ 引入的 string 类类型
C++ 标准库提供了 string 类类型,支持上述所有的操作,另外还增加了其他更多的功能。我们将学习 C++ 标准库中的这个类,现在让我们先来看看下面这个实例:
1 |
|
基本输入输出(cin cout cerr clog)
I/O 库头文件
头文件 | 函数和描述 |
---|---|
该文件定义了 cin、cout、cerr 和 clog 对象,分别对应于标准输入流、标准输出流、非缓冲标准错误流和缓冲标准错误流。 | |
该文件通过所谓的参数化的流操纵器(比如 setw 和 setprecision),来声明对执行标准化 I/O 有用的服务。 | |
该文件为用户控制的文件处理声明服务。我们将在文件和流的相关章节讨论它的细节。 |
标准输出流(cout)
预定义的对象 cout 是 iostream 类的一个实例。cout 对象”连接”到标准输出设备,通常是显示屏。cout 是与流插入运算符 << 结合使用的,C++ 编译器根据要输出变量的数据类型,选择合适的流插入运算符来显示值。<< 运算符被重载来输出内置类型(整型、浮点型、double 型、字符串和指针)的数据项。
流插入运算符 << 在一个语句中可以多次使用,如上面实例中所示,endl 用于在行末添加一个换行符。
cout << str_cin << endl;
格式化输出
ostream 类的成员方法
成员函数 | 说明 |
---|---|
flags(fmtfl) | 当前格式状态全部替换为 fmtfl。注意,fmtfl 可以表示一种格式,也可以表示多种格式。 |
precision(n) | 设置输出浮点数的精度为 n。 |
width(w) | 指定输出宽度为 w 个字符。 |
fill(c) | 在指定输出宽度的情况下,输出的宽度不足时用字符 c 填充(默认情况是用空格填充)。 |
setf(fmtfl, mask) | 在当前格式的基础上,追加 fmtfl 格式,并删除 mask 格式。其中,mask 参数可以省略。 |
unsetf(mask) | 在当前格式的基础上,删除 mask 格式。 |
fmtfl 和 mask 参数可选值
标 志 | 作 用 |
---|---|
ios::boolapha | 把 true 和 false 输出为字符串 |
ios::left | 输出数据在本域宽范围内向左对齐 |
ios::right | 输出数据在本域宽范围内向右对齐 |
ios::internal | 数值的符号位在域宽内左对齐,数值右对齐,中间由填充字符填充 |
ios::dec | 设置整数的基数为 10 |
ios::oct | 设置整数的基数为 8 |
ios::hex | 设置整数的基数为 16 |
ios::showbase | 强制输出整数的基数(八进制数以 0 开头,十六进制数以 0x 打头) |
ios::showpoint | 强制输出浮点数的小点和尾数 0 |
ios::uppercase | 在以科学记数法格式 E 和以十六进制输出字母时以大写表示 |
ios::showpos | 对正数显示“+”号 |
ios::scientific | 浮点数以科学记数法格式输出 |
ios::fixed | 浮点数以定点格式(小数形式)输出 |
ios::unitbuf | 每次输出之后刷新所有的流 |
1 |
|
iomanip 格式化输出
流操纵算子 | 作 用 | |
---|---|---|
*dec | 以十进制形式输出整数 | |
hex | 以十六进制形式输出整数 | |
oct | 以八进制形式输出整数 | |
fixed | 以普通小数形式输出浮点数 | |
scientific | 以科学计数法形式输出浮点数 | |
left | 左对齐,即在宽度不足时将填充字符添加到右边 | |
*right | 右对齐,即在宽度不足时将填充字符添加到左边 | |
setbase(b) | 设置输出整数时的进制,b=8、10 或 16 | |
setw(w) | 指定输出宽度为 w 个字符,或输入字符串时读入 w 个字符。注意,该函数所起的作用是一次性的,即只影响下一次 cout 输出。 | |
setfill(c) | 在指定输出宽度的情况下,输出的宽度不足时用字符 c 填充(默认情况是用空格填充) | |
setprecision(n) | 设置输出浮点数的精度为 n。 在使用非 fixed 且非 scientific 方式输出的情况下,n 即为有效数字最多的位数,如果有效数字位数超过 n,则小数部分四舍五人,或自动变为科学计 数法输出并保留一共 n 位有效数字。 在使用 fixed 方式和 scientific 方式输出的情况下,n 是小数点后面应保留的位数。 | |
setiosflags(mask) | 在当前格式状态下,追加 mask 格式,mask 参数可选择表 2 中的所有值。 | |
resetiosflags(mask) | 在当前格式状态下,删除 mask 格式,mask 参数可选择表 2 中的所有值。 | |
boolapha | 把 true 和 false 输出为字符串 | |
*noboolalpha | 把 true 和 false 输出为 0、1 | |
showbase | 输出表示数值的进制的前缀 | |
*noshowbase | 不输出表示数值的进制.的前缀 | |
showpoint | 总是输出小数点 | |
*noshowpoint | 只有当小数部分存在时才显示小数点 | |
showpos | 在非负数值中显示 + | |
*noshowpos | 在非负数值中不显示 + | |
uppercase | 十六进制数中使用 A~E。若输出前缀,则前缀输出 0X,科学计数法中输出 E | |
*nouppercase | 十六进制数中使用 a~e。若输出前缀,则前缀输出 0x,科学计数法中输出 e。 | |
internal | 数值的符号(正负号)在指定宽度内左对齐,数值右对 齐,中间由填充字符填充。 |
1 |
|
标准输入流(cin)
预定义的对象 cin 是 iostream 类的一个实例。cin 对象附属到标准输入设备,通常是键盘。cin 是与流提取运算符 >> 结合使用的,
cin >> str_cin;
标准错误流(cerr)
预定义的对象 cerr 是 iostream 类的一个实例。cerr 对象附属到标准输出设备,通常也是显示屏,但是 cerr 对象是非缓冲的,且每个流插入到 cerr 都会立即输出。
标准日志流(clog)
预定义的对象 clog 是 iostream 类的一个实例。clog 对象附属到标准输出设备,通常也是显示屏,但是 clog 对象是缓冲的。这意味着每个流插入到 clog 都会先存储在缓冲区,直到缓冲填满或者缓冲区刷新时才会输出。
引用& (注意区别于指针)
C++ 引用 vs 指针
引用很容易与指针混淆,它们之间有三个主要的不同:
- 不存在空引用。引用必须连接到一块合法的内存。
- 一旦引用被初始化为一个对象,就不能被指向到另一个对象。指针可以在任何时候指向到另一个对象。
- 引用必须在创建时被初始化。指针可以在任何时间被初始化。
引用符号:&
1 |
|
new delete 动态内存分配
1 |
|
具体差别可以参考
[new delete malloc free]: ..\embedded!Main\嵌入式编程学习笔记.md#C类##newdeletemallocfree “new delete malloc free”
[new delete malloc free](..\embedded!Main\嵌入式编程学习笔记.md##new delete malloc free)
函数
函数参数
如果函数要使用参数,则必须声明接受参数值的变量。这些变量称为函数的形式参数。
形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。
当调用函数时,有三种向函数传递参数的方式:
调用类型 | 描述 |
---|---|
传值调用 | 该方法把参数的实际值赋值给函数的形式参数。 在这种情况下,修改函数内的形式参数对实际参数没有影响。 |
指针调用 | 该方法把参数的地址赋值给形式参数。 在函数内,该地址用于访问调用中要用到的实际参数。这意味着,修改形式参数会影响实际参数。 |
引用调用 | 该方法把参数的引用赋值给形式参数。 在函数内,该引用用于访问调用中要用到的实际参数。这意味着,修改形式参数会影响实际参数。 |
默认参数
当您定义一个函数,您可以为参数列表中后边的每一个参数指定默认值。当调用函数时,如果实际参数的值留空,则使用这个默认值。
这是通过在函数定义中使用赋值运算符来为参数赋值的。调用函数时,如果未传递参数的值,则会使用默认值,如果指定了值,则会忽略默认值,使用传递的值。
1 |
|
Lambda函数 匿名函数
C++11 提供了对匿名函数的支持,称为 Lambda 函数(也叫 Lambda 表达式)。
Lambda 表达式把函数看作对象。Lambda 表达式可以像对象一样使用,比如可以将它们赋给变量和作为参数传递,还可以像函数一样对其求值。
Lambda 表达式本质上与函数声明非常类似。Lambda 表达式具体形式如下:
1 |
|
关于capture里面的值如何获取:
[] // 沒有定义任何变量。使用未定义变量会引发错误。
[x, &y] // x以传值方式传入(默认),y以引用方式传入。
[&] // 任何被使用到的外部变量都隐式地以引用方式加以引用。
[=] // 任何被使用到的外部变量都隐式地以传值方式加以引用。
[&, x] // x显式地以传值方式加以引用。其余变量以引用方式加以引用。
[=, &z] // z显式地以引用方式加以引用。其余变量以传值方式加以引用。
值捕获 与函数中的值传递类似。lambda表达式捕获的是变量的一个拷贝,因此我们如果在lambda表达式后面改变该变量值的话,不会影响捕获前的该变量值,这就是所谓的值捕获
1
2int a = 1;
[a](){printf("%d\n", a;);}引用捕获 引用捕获和值捕获形式完全一样,只是在捕获列表中传的是变量的引用,类似于函数中的引用传递,变成下面这个样子
1
2int a = 1;
[&a](){printf("%d\n", a;);}隐式捕获的方式,就是捕获的列表可以用
=
和&
代替,让编译器隐式的推断你使用的是哪个变量,然后这两个字符表示捕获的类型=
表示值捕获,&
是引用捕获;写出来之后就变成了如下的形式:1
2int a = 1;
[=](){printf("%d\n", a);};
1 |
|
- 这个知识点没看懂是匿了什么名, 不知所云, 难道和匿名没关系?只是捕获的功能?
函数重载
- 确保函数名一致,在调用时根据参数来判断调用那个函数。
- 其参数个数或类型有所不同。
1 |
|
类和对象
- 对象是类的实例
1 |
|
构造函数和析构函数
构造函数
- 与类同名
- (有但不指定)返回值
- 可重载
- 可以有传入参数
- 创建对象时自动调用
- 初始化由类中声明顺序决定,与初始化列表顺序无关
- 初始化列表优先于构造函数内的赋值
1 |
|
初始化列表
使用初始化列表来初始化字段:
1 |
|
上面的语法等同于如下语法:
1 |
|
假设有一个类 C,具有多个字段 X、Y、Z 等需要进行初始化,同理地,您可以使用上面的语法,只需要在不同的字段使用逗号进行分隔,如下所示:
1 |
|
析构函数
- 类名前加 ~
- 不能有返回值
- 无参数,不重载
- 销毁系统自动调用
1 |
|
复制构造函数
- 与类同名
- 只有一个参数即对同类引用
被调用的情况
- 用类的已知对象初始化另一个正在创建的对象
1 |
|
this 指针
this指针指向类对象的地址
以下两函数等价
1 |
|
静态成员 static
变量
所有类的对象有一个相同唯一的 数据成员 (共同点)
static 声明的 数据成员(初始化不加static)
作用域是类范围类
必须要进行初始化,文件作用域进行初始化
1 |
|
函数
所有类的对象有一个相同唯一的 函数 (操作),该函数不能直接访问非静态成员(static 变量)。
- static 声明的函数(类外定义不能加static)
1 |
|
常成员 const
常对象
- 不可更改
- 定义时必须初始化
- 只能调用 常成员函数(有const),不能调用一般的成员函数(没有const的一般函数)
1 |
|
常数据成员
- 只能通过构造函数成员初始化列表显式初始化
1 |
|
常成员函数
- 声明 定义都需要const
- 常成员函数 不能更改对象的数据成员
- 可重载
1 |
|
Lib
Note
头文件
- 每个头文件只声明一个类
- #ifndef 防止重复包含
- cpp 和 h 文件应该同名
读取文件发现数据长度不对
1 |
|
1 |
|
他们的输出结果似乎不太一样, 好像是对 0D 0A
的数量计算方法不太一致导致的.
读取文件全部内容
iostream著名专家Dietmar Kuehl给出了两个读取方法
1 |
|
或
1 |
|
C/C++调用exe文件
1 |
|